
Decision-Theory for Crisis Management

| Final Report |

Mois�es Goldszmidt

(Principal Investigator and Program Manager)

Adnan Darwiche

(Principal Investigator)

Tom Ch�avez

David Smith

James White

Additional Participants:

John Breese, Denise Draper, Max Henrion, and Mark Peot

Rockwell Science Center

Palo Alto, CA 94301

(415) 325 7145

PIIN:

F30602-91-C-0031
PR NO.

B-1-3356
ARPA Order Number:

7741

E�ective Date of Contract:

February-01-1991

Contract Expiration Date:

September-30-1994

Amount of Contract:

$1,808,626.00

The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official poli-

cies, either expressed or implied, of the Advanced Research Projects

Agency or the U.S. Government.

i

Contents

1 Executive Summary 1

1.1 Plan Generation Results : 1

1.2 Plan Evaluation Results : 2

1.3 Plan Simulation Results : 3

2 Introduction: Decision-Theory for Crisis Management 4

3 Plan Generation 5

3.1 Conditional Planning : 6

3.2 Control of Planning Search : 7

3.2.1 Operator graphs : 8

3.2.2 Operator relevance : 10

3.2.3 Variable analysis : 10

3.2.4 Open condition ordering : 12

3.2.5 Recursion analysis : 13

3.2.6 Postponing Conicts : 14

3.2.7 Conict resolution strategies : 15

3.3 Partial Plan Evaluation : 16

4 Plan Evaluation 18

4.1 Transportation Trade-o� Analyzer : 20

4.2 Decision-Theoretic Modeling Tools in the CPE : : : : : : : : : : : : : : : 20

4.3 Course Of Action Trade-o� Analyzer : 22

4.4 Sensitivity Analysis in Planning : 25

4.4.1 The Expected Value of Information : : : : : : : : : : : : : : : : : 26

4.4.2 Computing the Value of Information in Large Decision Models : : 26

5 Plan Simulation 29

5.1 Action Networks : 30

5.1.1 Introduction into action networks : : : : : : : : : : : : : : : : : : 31

5.1.2 Progress on Action Networks : 31

5.2 Algorithms : 33

5.2.1 Introduction : 33

5.2.2 Dynamic Conditioning : 35

5.2.3 Prediction Algorithm: Speci�c to action networks : : : : : : : : : 36

5.2.4 Prediction Algorithm: Speci�c to order-of-magnitude networks : : 37

5.2.5 Bounded Conditioning : 37

ii

6 Concluding Remarks 39

A Appendix: Relevant Papers 44

iii

List of Figures

1 A partial conditional plan. : 7

2 Operator graph for a simple propositional problem. : : : : : : : : : : : : 9

3 First-order Operator graph. : 11

4 Operator graph after variable analysis. : : : : : : : : : : : : : : : : : : : 12

5 Partial plans with recursion. : 14

6 Search space relationships for �ve threat removal strategies. : : : : : : : 16

7 Propositional operator graph with operator costs. : : : : : : : : : : : : : 17

8 Partial plan with two open conditions. : : : : : : : : : : : : : : : : : : : 18

9 Model structure used in the Transportation Trade-O� Analyzer. : : : : : 19

10 An example of an inuence diagram in IDEAL-EDIT. : : : : : : : : : : 21

11 The graph describes the buildup of U.S. citizens at an assembly area. : : 22

12 Top level model for the NEO course of action analysis tool. The tool

generates graphs describing risks for U.S. citizens and estimates of trans-

portation times. : 23

13 Conceptual overview of the algorithm for estimating EVI. : : : : : : : : 27

14 Probability distribution on Z. : 28

15 Schematic view of a plan simulation scenario. : : : : : : : : : : : : : : : 30

16 An example of an action network. : 32

17 Current realization of the Plan Simulator and Analyzer (PSA) tool. : : : 35

List of Tables

1 Summary of Rockwell's contributions to ARPI. : : : : : : : : : : : : : : : 1

2 Impact on scienti�c and applications communities and future plans. : : : 2

3 Operator de�nitions. : 8

iv

1 Executive Summary

The Rockwell Science Center's main contribution to the ARPA Planning Initiative

(ARPI) has been the development and application of decision theoretic concepts and

tools to the problem of military transportation and crisis planning. Real world planning,

like most complex problems, involves multiple competing objectives and uncertainty

about actual outcomes. Thus, e�ective operational tools for planning must be able to

e�ciently manage uncertainty and trade-o�s between competing objectives. Rockwell's

contributions span three main areas of the planning process: generation, evaluation,

and simulation. Contributions range from basic research results to application oriented

software tools for military transportation planning. These contributions are briey enu-

merated in the sections below, and are summarized in Tables 1 and 2.

Planning Basic Advances Demonstrations & Deliverables

Subtask

Generation Conditional planning (First CNLP). Brie�ng at
Control of planning search (Op. Graphs). Rome Labs 1993.

Evaluation of partial plans.

Evaluation Transportation Trade-o� IFD-3 Sept 1993.
Analyzer Tool (TTA). ARPI Workshops

Course of Action Trade-o� 1992, 1993, and 1994.
Analyzer Tool (COATA). Software training sessions

New Algorithms for for Rome Labs Manager,
Sensitivity Analysis. Sept. 1993

TTA, IDEAL,
IDEAL-DEMOS May 1992.

Simulation Uncertainty modeling over time. Site visit (Palo Alto) by

Suite of approximate and exact Rome Labs Manager,
algorithms for inference. Sept 1994.

Table 1: Summary of Rockwell's contributions to ARPI.

1.1 Plan Generation Results

� Conditional planning. Developed and implemented the �rst algorithm for condi-
tional partial order planning. The algorithm accepts a goal, initial conditions, and

Strips-like operators, extended to allow uncertain outcomes. It produces partially-
ordered plans with conditional branches for observed uncertainties. Details of the

algorithm are in [37]. The ideas from this algorithm are now used in several other

planners and algorithms including [18, 20, 8]. See Section 3.1.

1

Planning Impact Future

Subtask Plans

Generation Techniques and methods inuenced Techniques being extended in
other planners such as ARPA{MADE program.

[18, 20, 8, 27, 34, 29]. Part of Rockwell IR&D.

Evaluation Decision theoretical Graphical interfaces being
component in TARGET. extended for in-house tools.

Simulation Uncertainty modeling techniques Extend simulation techniques to

being used by other generation.
researchers [25, 1]. Applications to diagnosis

for Rockwell business divisions.

Table 2: Impact on scienti�c and applications communities and future plans.

� Control of planning search. Developed, implemented, and evaluated a number
of techniques to help control the combinatorial explosion that occurs in genera-

tive planning. The control techniques include smart ordering of open conditions,
recognition and control of recursion, variable binding analysis, and smart resolu-
tion of threats between operators. Descriptions of these techniques can be found
in [42, 44, 38, 41]. Several of these ideas are now being investigated in other
generative planners [27, 34, 29]. See Section 3.2.

� Evaluation of partial plans. Developed a technique for estimating the value

of partially completed plans. This technique provides estimates of the cost and
probability of success of achieving di�erent possible subgoals that could occur for
a problem. This information is then used to compute an estimate of the cost
and probability of success for a partial plan [41]. We are currently investigating
this technique further for the generation of assembly plans in the ARPA MADE

project. See Section 3.3.

1.2 Plan Evaluation Results

� Software tools. During the course of the program Rockwell produced and made

available to the ARPI community a set of tools for utility modeling and decision

theoretic evaluation of plans. These include:

{ IDEAL, IDEAL-DEMOS. Domain independent decision theoretic soft-
ware tools, which enable construction and evaluation of utility models (made
available to CPE in May 1992). Delivered to the Common Prototyping En-

vironment (CPE) (1992). See Section 4.2.

{ Transportation Trade-o� Analyzer (TTA). Utility models and inference
machinery for computing trade-o�s between consumption of resources and

2

the expected time for the achievements of goals under uncertainty in the

transportation domain (delivered in May 1992). See Section 4.1.

{ Course Of Action Trade-o� Analyzer (COATA). Utility models and in-

ference machinery for the evaluation of courses of action in the noncombatant

evacuation domain. COATA constituted the decision theoretic component of

the \Theater-level Analysis, Replanning and Graphical Execution Toolbox"

(TARGET) for the third Integrated Feasibility Demonstration (IFD-3) (May

and September 1993). See Section 4.3.

� Sensitivity analysis. Developed a new approximation algorithm for uncovering

relevant data with respect to a given set of decisions and a course of actions. This

functionality has proven to be essential for building utility models in both COATA

and the TTA. See Section 4.4.

1.3 Plan Simulation Results

� Modeling uncertain domains. Developed a graphical language, called Action
Networks, for modeling uncertain situations for the purpose of simulating their

dynamics under di�erent courses of action. Action networks are based on extending
causal networks with explicit constructs for time and action. See Section 5.1.

� Algorithms for uncertain inference. Developed a collection of algorithms for

simulating plans under uncertain conditions. The algorithms allow the user to
trade-o� accuracy for response time in the simulation process, and they can be
used in general forecasting of uncertainty models:

{ �-bounded conditioning. A method for the approximate simulation of
plans that allows the user to trade the exactness of the simulation with the
time it takes to compute the simulation. See Section 5.2.5.

{ Dynamic Conditioning. A method for the exact simulation of plans based
on hypothetical reasoning (reasoning by cases). Dynamic conditioning pro-

vides an e�ective infra-structure for realizing computational techniques that
are based on reasoning by cases. �-bounded conditioning makes use of dy-

namic conditioning. See Section 5.2.2.

{ Kappa Predict. An algorithm for predicting the e�ect of plans with re-

spect to order-of-magnitude action networks. The algorithm has a polynomial

computational complexity but may be unable to provide complete answers in
certain cases. Although the answers it provides may be incomplete, they may
be enough to judge the quality of certain plans. It is a major building block

of �-bounded conditioning. Section 5.2.4.

{ Action Network Predict. An algorithm for predicting the e�ect of plans
with respect to a subclass of action networks. The algorithm has a polynomial

computational complexity on this subclass. See Section 5.2.3.

3

2 Introduction: Decision-Theory for Crisis Man-

agement

Military planning for crisis management and transportation scheduling is characterized

by unavoidable uncertainties and di�cult trade-o�s about resources and objectives. For

example, reliability and rapidity of deployment often come at the cost of increased

resource requirements, including transport crew, vehicles, fuel, port facilities, and so on.

Under limited resources and in crisis conditions, prompt delivery of force A to location

X may require delays in delivery for unit B to location Y . Greater transport volumes

may be possible for given resources, but only at the cost of higher risks of delay or

loss. Thus, any successful tool for planning in this domain must be able to represent

the inherent uncertainty, and formulate, weight and resolve the di�erent trade-o�s in

order to compute and evaluate feasible courses of actions. Rockwell's main objective in

this program has been to develop computational models and systems that incorporate
notions of rational decision making and reasoning under uncertainty in order to enable
the generation, evaluation and simulation of military plans that e�ectively meet these

demands.

An examination of the state of the art at the time this program began reveals that

traditional approaches to planning and scheduling, including the current military sys-
tems, employ goal-oriented and constraint satisfaction notions that deal primarily with
feasibility and goal satisfaction. These approaches include a speci�cation of a set of
Boolean goals, a deterministic world model, and a set of action descriptions specifying
how an action deterministically transforms the world from one state to another. Tra-

ditional AI planning shares this world view | it is normally de�ned as generating a
sequence or program of actions that will allow the agent to transform the current world
into a world where the goal is true. This view of planning is too narrow as a general
notion of planning for several reasons.

The �rst problem is that goals are rarely expressible as a set of Boolean sentences.
Invariably, there are partially achievable goals and trade-o�s involved. We wish to
achieve security for American citizens in some region, but security is rarely absolute

and it may only be possible to secure major population centers. Given these types

of trade-o�s, we believe it is necessary to employ a richer representation of objectives,

namely, a utility function, that allows one to score various combinations of outcomes
(e.g., casualties, �scal expenditures, achievement of mission objectives). As soon as

one adopts a utility or objective function (or even some partial order on world states)
as a representation of preferences, planning is transformed from a notion of constraint

satisfaction and goal achievement into an optimization problem.

The second problem is that most automated planning and scheduling systems, in-

cluding techniques arising in both AI and operations research (e.g. linear programming),

do not include any notion of uncertainty. AI planning systems typically assume a deter-
ministic world model, where all actions have deterministic e�ects, and any changes to the

world model are due to the actions of the agent. These assumptions are clearly untenable

4

for military planning and scheduling. Action e�ects are not guaranteed because planes

can break down, ports can be bombed, and weather can be adverse, all in unpredictable

ways. Other agents, such as the enemy or some other threat, can interfere with ongoing

plans or actions in a non-deterministic manner. Therefore, mechanisms for addressing

uncertainty are necessary in a planning situation. To deal with this problem, existing

DOD planning exercises often assume a worst-case scenario in order to assess the impact

of an adverse outcome on the plan. Unfortunately, this strategy yields inexible plans

with sometimes unacceptable economical costs. In this project, we adopt probability as

a mechanism for modeling uncertainty. This provides a theoretically sound means for in-

corporating uncertainty, and allows us to utilize a number of well-established algorithms

for reasoning.

Rockwell activities in this program cover three main areas in planning technology:

1. Plan Generation. The objective behind this area of planning has been to re-
search and develop general purpose planning systems suitable for military trans-
portation planning and crisis management based on generalizing classical gener-

ative planning techniques to incorporate utility and probability metrics. Several
signi�cant advances were made that led to scholarly papers. Upon publication
these advances were adopted by other researchers in their automated generative
planners.

2. Plan Evaluation. The work in this area concentrated on developing approaches
and software tools for the construction, analysis, and explanation of utility models
in the domain of military transportation planning and crisis management. Some
of these models were developed in close collaboration with military personnel.

3. Plan Simulation. Our involvement on plan simulation has been directed towards
creating a tool for supporting and assisting a military planner in simulating the
behavior of each possible course of action to enable a choice of which one to

adopt. This work, under the name Action Networks, has signi�cantly extended
the power of the probabilistic reasoning methods with the addition of capabilities
for qualitative reasoning, the explicit representation of time and actions, and the
increased ease of end-user domain modeling.

A summary of the technical approach and main results in each of these areas can be

found in Sections 3, 4, and 5 respectively. The details can be found in the set of papers
we include in the Appendix.

3 Plan Generation

Our work on plan generation has focused on three areas:

1. Extension of generative planning techniques to allow the generation of conditional

plans and plans under uncertainty.

5

2. Controlling the search required to generate plans.

3. Using utility information to help guide a planner towards better plans.

We have made signi�cant progress in all three of these areas and give brief descrip-

tions below.

3.1 Conditional Planning

Classical goal based planners assume that 1) the e�ects of operators are determinis-

tic and completely speci�ed, and 2) no exogenous events or actions take place during

plan execution. Because of these assumptions, classical planners generate unconditional

deterministic plans.

A conditional plan is necessary when uncertainties in the environment or in the
e�ects of actions preclude the selection of a single course of action to accomplish a goal.
A conditional plan contains tests and branches that result in di�erent courses of action
depending on the outcome of each test.

Under this contract we developed the �rst algorithm for conditional partial order
planning (CNLP). The algorithm is based on the Systematic Non-Linear Planning al-
gorithm (SNLP) of McAllester and Rosenblitt [31]. Like SNLP, CNLP accepts a goal,
initial conditions, and Strips-like operators. However, unlike, SNLP, operators can have

several di�erent sets of e�ects. Each set of e�ects denotes a di�erent possible outcome
for the operator. For example the operator:

Drive(x; y)
Pre: fAt(x), Route(x; y)g
E�ects: fAt(y), :At(x)g

fStuck(x; y), :At(x)g

has two possible outcomes, one where the destination is attained, and one where the
vehicle gets stuck enroute. (One can imagine other possible outcomes.)

Like the SNLP algorithm, CNLP works backwards from open conditions (goals and

preconditions) and inserts new steps and causal links into the plan to achieve those open
conditions. For CNLP, an action can be inserted into the plan if any one of its e�ect sets

would achieve the open condition. When a step is introduced with multiple outcomes,
CNLP needs to consider how to achieve the goal if any of the alternative (contingent)

outcomes were to occur.

To do this, CNLP must keep track of two additional kinds of information:

1. Context: the set of contingencies under which each action in the plan will be

executed.

2. Reason: the ultimate purpose for each action and open condition in the plan.

6

Finish

S1

G

S2

P
Q

G’

Context S2:P

Context S2:Q

Reason S2:Q

Figure 1: A partial conditional plan.

When a step with multiple outcomes is introduced, each outcome is tagged with a
di�erent context label. This context indicates the conditions under which any dependent
steps will be executed, so any action supported by that e�ect inherits the context label.

To plan for contingent outcomes, the planner reintroduces the original goal as an
open condition, but gives it a reason label that corresponds to the contingent context
being considered. Planning then proceeds as before, except that steps in the original

context cannot be used to achieve open conditions with the new reason label.

As an example, consider the partial plan in Figure 1. The original goal is the single
clause G, and the step S1 is being used to achieve it. The step S2 is being used to achieve

the precondition P of S1. However, S2 has another possible outcome, Q. The step S1 is
therefore labelled with the context S2 : P . CNLP also adds a new open condition G0

(a copy of the goal G) with reason S2 : Q. Because S2 : P and S2 : Q are incompatible,
the step S1 cannot be used to achieve G0.

Threat resolution for CNLP is also more complex than for SNLP. For example,
threats cannot occur between incompatible contexts. Conditioning an action on a con-

tingent outcome can therefore be used to remove a threat from a plan.

Detailed descriptions of CNLP can be found in [37] and [36]. Techniques developed
for CNLP are now being used in several other planners including [18], [20], and [8].

3.2 Control of Planning Search

Control of search is a critical problem in generative planning. The trouble is that there

are too many partial plans, most of which either fail, or are very costly. Unfortunately,
the introduction of uncertainty and conditionals only makes the problem worse; there

are more circumstances that can occur and therefore more possibilities that must be

considered.

7

We have developed and investigated a number of techniques to help control search

including:

1. Recognition of operator relevance,

2. Variable binding analysis,

3. Smart open condition ordering,

4. Recursion analysis,

5. Conict postponement,

6. Smart conict resolution strategies.

Most of these techniques make use of a structure called an operator graph (also

developed under this contract). Operator graphs facilitate meta-level reasoning about
the way in which relevant operators can interact. In the next section we briey describe
operator graphs. In subsequent sections we briey describe each of the above control
techniques. Several of these control techniques are now being investigated by other
researchers including Draper, Joslin [27], Kambhampati and Weld.

3.2.1 Operator graphs

An operator graph is a directed graph consisting of operators and their preconditions.
Edges in the graph indicate which preconditions belong to which operators, and which
operators can potentially be used to satisfy which preconditions. To illustrate, consider
the simple set of operators in the table below:

Operator Precondition E�ects

O1 R A

O2 S A

O3 T B

O4 U; V B

O5 W T

Table 3: Operator de�nitions.

Suppose that the goal is A and B and the initial conditions are R, S, U , V , and
W . The operator graph for this problem is shown in Figure 2. Intuitively the operator

graph is a schematic that shows the basic relationships between the goals, subgoals and

operators for this problem. Among other things, it shows that both O1 and O2 can

potentially be used to achieve A, and that O3 and O4 can potentially be used to achieve

B.

8

Finish

O1

A B

O2

SR

O3 O4

UT V

O5

W

Figure 2: Operator graph for a simple propositional problem.

9

While there may be many potential plans for a problem there is only one operator

graph, and each operator appears only once in the graph. As a result the operator graph

has bounded size and is quick and easy to construct. A more complete description of

operator graphs and their construction can be found in [44].

3.2.2 Operator relevance

One important advantage of constructing an operator graph for a problem is that it

allows us to easily determine which operators are relevant to each open condition in a

planning problem. For the open condition B we can readily determine that O3 and O4

are the only relevant operators.

We can take additional advantage of this property by performing some analysis on

the operator graph ahead of time. Suppose that in the example above, W were not in

the open conditions. In this case there would be no way of achieving the precondition of
O5, so O5 can be deleted from the graph. Having done this, there is no way of achieving
T , the precondition of O3. As a result, O3 can also be deleted from the graph. More
generally, if any precondition of an operator in the operator graph cannot be achieved,

the operator can be deleted from the graph.This can be applied repeatedly to eliminate
all irrelevant operators from the graph.

Doing this analysis reduces the number of blind alleys that the planner must inves-

tigate.

3.2.3 Variable analysis

The example used above was purely propositional, but many planning problems involve
variables. Figure 3 shows an operator graph for a �rst-order version of the previous
problem. As indicated in the graph, there are many initial conditions that satisfy each
of the predicates R(x), S(x), W (x), U(x; y) and V (y). Now suppose that our planner

�rst chooses to work on the open condition A(x), and chooses the plan where O1 is
used to achieve A(x). The planner might then try di�erent possible bindings for x
that achieve R(x), and then try to achieve B(x). Unfortunately, none of the possible

bindings for W (x) are compatible with the bindings for R(x). Similarly, none of the
possible bindings for U(x; y) are compatible with the bindings for V (y). As a result, all

of these plans will ultimately fail.

Rather than rediscovering this for each plan, this variable binding analysis can be

performed once in the operator graph. We start at the bottom of the graph and work

upwards, �guring out the possible bindings for each open condition in the graph. So, in
our example the possible bindings for A(x) would be x 2 0; 2; 4; 6; 8; 10 : : :, and for T (x)
would be x 2 1; 3; 5; : : :. The bindings for U(x; y) and V (y) are incompatible, so O4

can be immediately removed from the graph, and the possible bindings for B(x) become

x 2 1; 3; 5; : : :. Many of the bindings for A(x) and B(x) are incompatible. Taking the
intersection, we get the set x 2 5; 15; 25; : : :.

10

Finish

O1

A(x) B(x)

O2

S(x)R(x)

O3 O4

U(x,y)T(x) V(y)

O5

W(x)

x 2 4 6 …, , ,{ }∈ x 0 5 10 …, , ,{ }∈

x 1 3 5 …, , ,{ }∈

x 1 3 5 …, , ,{ }∈
y 0= y 1 2 3 …, , ,{ }∈

Figure 3: First-order Operator graph.

11

Finish

A(x) B(x)

O2

S(x)

O3

T(x)

O5

W(x)

x 5 15 25 …, , ,{ }∈

x 5 15 25 …, , ,{ }∈

x 5 15 25 …, , ,{ }∈

x 5 15 25 …, , ,{ }∈

x 5 15 25 …, , ,{ }∈

Figure 4: Operator graph after variable analysis.

The second part of the process is to propagate these limitations back down the tree.
When we do this for A(x) we �nd that the remaining bindings are incompatible with the
bindings for R(x), so O1 can be deleted from the graph. When the process is complete,
the resulting operator graph is as shown in Figure 4. This operator graph dramatically
limits the space of plans that will have to be explored by the planner.

In general, variable analysis in the operator graph can be expensive because the sets of
variable bindings can become large. However it is always possible to simplify the binding
sets by removing those variables that have too many possible solutions. Removing the

variable means that we are assuming it can take on any possible value. This may reduce

the amount of pruning that can be done, but doesn't a�ect the completeness or soundness
of the planning process.

3.2.4 Open condition ordering

The choice of which open condition to work on next often results in orders of magnitude

di�erence in the amount of search required. The most important factor in deciding which

open condition to work on next is the number of di�erent possible ways of achieving the
open condition. If there are few potential plans for an open condition, then choosing

and expanding that open condition does not signi�cantly increase the number of partial
plans. Alternatively, expanding an open condition with many options leads to many

12

possible plans.

Counting the number of possible expansions for each open condition does add over-

head to the planning process. However, the operator graph can be used to help speed

this process. First, it provides an upper bound on the number of possibilities for each

open condition. Second, it allows the planner to rapidly �nd and count the relevant

expansions for each open condition. As a result, the overhead for this technique seems

to be minimal. We have evaluated this technique in several standard planning test do-

mains and found it to be extremely successful. These experimental results can be found

in [38]. Joslin [27] has done further evaluation of this technique and has con�rmed its

signi�cance.

3.2.5 Recursion analysis

Many operators in planning problems allow recursion. For example, a transportation

operator might be used to go from A to B, but might also be used to go back from B

to A. This means that a plan can be constructed that involves going back and forth
between A and B any number of times. Sometimes this may be necessary. For example,
several trips might be necessary to transport all the supplies to B. Unfortunately, such
operators also allow planners to construct and investigate lots of ridiculous plans.

We've developed a technique that helps to avoid useless recursion. The basic idea is
to recognize when the planner has generated a repeated subgoal and suspend work on

that subgoal until there is some other reason for exploring that repeated subgoal. To
illustrate, consider the partial plan in Figure 5a. The goal is to achieve P and R, and
the step S1 is used to achieve P . S2 is used to achieve the precondition Q of S1, but S2

has the precondition P , which is one of the goals the planner was trying to achieve in the
�rst place. As a result, the open condition P of S2 can be suspended. This means that
the planner should not work on this open condition unless some other open condition is

linked into either S1 or S2. In Figure 5b, the open condition R is now being established
by S2. As a result, the condition P must be reenabled. In contrast, if no other open
condition is ever linked to S1 or S2 (as in Figure 5c), the plan is discarded.

There is considerable overhead involved in recognizing recursive open conditions, and
in checking to see when they should be re-enabled. Operator graphs help considerably
in this process because they make it clear which open conditions are susceptible to

recursion, and also make it clear which operators could potentially link into a recursion

and cause open conditions to be re-enabled. (If there is no possibility of such links, the
plan can be discarded early.)

There are a number of subtleties involved in the general technique.

1. The presence of variables makes suspension and enablement conditions more com-

plex.

2. Certain conicts between operators may also require re-enablement of suspended

open conditions.

13

Finish

S1

S2

P

Q

P

R

Finish

S1

S2

P

Q

P

R

(suspended) (re-enabled)

Finish

S1

S2

P

Q

P

R

(suspended)

S3

Figure 5: Partial plans with recursion.

A more complete description of this technique can be found in [40].

3.2.6 Postponing Conicts

During the planning process, conicts often arise between operators used to achieve
di�erent parts of a goal. For example, one operator may consume a resource needed for
another operator, or may change some condition in the world that is a prerequisite for
another operator. Resolving these conicts is therefore a critical part of the planning
process.

Several planners [39], [49], [50] ignore conicts until planning is otherwise complete,
and then try to �x the plan to eliminate conicts. If the subgoals in the problem interact

only loosely, this can be an e�cient strategy. However, if there are complex interactions

between the subgoals and operators for a problem, this approach results in extensive
backtracking by the planner.

An alternative approach used in recent planning systems [31], [2], [52], [8] is to resolve

each conict as it arises during the planning process. Using this approach a planner

notices unresolvable conicts early in the planning process. The problem is that there

are often many possible ways to resolve each conict, thus contributing to an explosion

in the search space. More bluntly, resolving conicts during planning multiplies the
exponential task of conict resolution by the exponential task of planning.

Both of these alternatives are too extreme. Many conicts are simple to resolve and
can be delayed until the end. However, those that are tightly interconnected need to be

14

resolved during the planning process (once the entire group of conicts is generated). We

have developed techniques for automatically deciding which conicts should be resolved

during the planning process, and which conicts should be delayed until planning is oth-

erwise complete. The basic idea is to analyze the potential conicts between operators

in the operator graph. Roughly, a set of conicts can be postponed if we can show in the

operator graph that there will always be a way of eliminating the conicts by imposing

partial ordering constraints among the operators. Under these circumstances, the post-

poned conicts can be ignored during planning, and can always be resolved by imposing

additional ordering constraints on the otherwise complete plan. The technique is also

recursive; postponing one set of conicts may then allow postponing more conicts.

In loosely coupled domains, many of the conicts can usually be postponed. This has

the e�ect of decoupling the planning problem into two pieces: selection of the operators

for achieving the goals, and ordering the operators to eliminate conicts between them.

This can result in dramatic reductions in the amount of search required to �nd a plan.

More complete descriptions of this technique can be found in [43] and [44].

3.2.7 Conict resolution strategies

Not all conicts can be postponed. In this case the question arises as to when conicts
should be resolved during the planning process. The two options, resolve conicts im-

mediately, and resolve conicts at the end, represent two extreme positions. There are
several other interesting options:

DSEP : Wait to resolve a conict until the variable bindings guarantee that the conict

will occur.

DUNF : Wait to resolve a conict until there is only a single way of resolving it.

DRES : Continue checking each conict to make sure it can be resolved, but don't
resolve conicts until the end.

In [38], we give a detailed description of each of these three strategies, and show
that DSEP always generates a smaller search space than the usual strategy of resolving
conicts as soon as they occur. We also show that DUNF generates a smaller search

space than DRES, which generates a smaller search space than the strategy of delaying

consideration of conicts until the very end. Furthermore, strategies DSEP and DUNF
are not comparable: DSEP is better in some cases, andDUNF is better in others. These

theoretical results are summarized in Figure 6

These results have led to a more complex strategy (DMIN) [45] that is a combination

of both DSEP and DUNF. The basic idea is:

1. Do not consider any threat that is still separable.

15

Immediate

DSEP DUNF

DRES

Delay

Figure 6: Search space relationships for �ve threat removal strategies.

2. Resolve any threat that has only one possible resolution.

3. Verify that there is a way of resolving any remaining threats (not covered by 1 and
2), but do not commit to any particular resolution of these threats.

We have shown, theoretically, that this combination strategy always generates a

search space that is the same size or smaller than that of either DSEP or DUNF.
We have veri�ed all of these theoretical results by testing these strategies on several
standard planning test domains. A complete description of these experiments can be
found in [38]. Joslin, [27], and Kambhampati, [28], have also con�rmed several of these
experimental results.

3.3 Partial Plan Evaluation

In general we want planners that �nd not just any plan, but a good plan. Given utility
models for a planning domain, we can evaluate and compare completed plans. However,
it is computationally intractable to generate and compare all possible plans for a signif-

icant domain. Instead, we need to be able to evaluate and compare partial plans during
the planning process, so that planning e�ort can be focused on the most \promising"
plans. The tough part here is being able to estimate the cost and probability of suc-
cess for those parts of the plan that are not yet complete. More precisely, we want to

know how much it will cost, and how likely it is that we can achieve the remaining open

conditions in the plan. This, together with the actions already in the plan, allows an
estimate of the overall worth of the partial plan.

Operator graphs can be used to help estimate costs and probabilities for un�nished

parts of the plan. To see how this works, consider the operator graph in Figure 7, where

C1 through C5 are the costs of operators O1 through O5 respectively. According to the

operator graph, the conditions R, S, W , U , and V can all be satis�ed by the initial
conditions. As a result, they would all have cost 0. Next consider the condition A.

There are two possible operators that can be used to achieve A, O1, and O2. If O1 is

used, a cost of C1 will be incurred, plus the cost of achieving O1's preconditions. If O2 is

16

Finish

O1

A B

O2

SR

O3 O4

UT V

O5

W

C1 C2 C3 C4

C5

Figure 7: Propositional operator graph with operator costs.

used, a cost of C2 will be incurred, plus the cost of achieving O2's preconditions. Thus
the best we can expect for achieving A is the minimum of these two costs, min(C1; C2).
Similarly, the best we can expect for achieving B is min(C3 + C5; C4).

Now consider the partial plan shown in Figure 8. It contains one step, an instance
of O2, and two open conditions, S, and B. The cost of O2 is C2, the cost for S is 0, and
the best cost for B is min(C3+C5; C4). As a result, the best cost for this partial plan is
C2+min(C3+C5; C4). Using this cost, this plan can be compared with other candidate
partial plans.

In the above example, our calculations were particularly simple because the operators
are all propositional (no variables) and there is no recursion possible. When variables
and/or recursion are present, the analysis becomes much more complex. For example,

when variables are present, the cost of achieving a particular open condition may depend

heavily on the variable bindings. To take this into account we must use variable analysis
like that described in Section 3.2.3 to �nd out the possible relevant bindings for variables.

We then compute minimumcosts for these di�erent possible variable bindings. Recursion
among the operators poses similar problems.

Although we only considered cost in this example, the same kind of calculations can

be done for probability of success and utility. The key is that the operator graph allows
us to consider the alternative ways of achieving each potential subgoal, to facilitate some

17

Finish

A B

O2

S

C2

Figure 8: Partial plan with two open conditions.

estimate of how costly it will be to achieve that subgoal.

A more detailed description of this ongoing work can be found in [41].

4 Plan Evaluation

For plan evaluation, Rockwell e�orts concentrated on the building of utility models, and

the use of both in-house tools (IDEAL and IDEAL-DEMOS [48, 46]) and commercial
tools (DEMOS [51]) for decision making and inference. The �rst signi�cant product
of this e�ort was the Transportation Trade-o� Analyzer (TTA). This was a decision-
theoretic based tool that demonstrated substantial capability enhancements over tra-
ditional transportation schedulers and feasibility estimators. The TTA is described in

Section 4.1 and in previous annual reports to ARPI [4, 3].

The TTA was demonstrated at the end of the �rst year of the program, and as a
result, Rockwell was invited to apply these decision-theoretic tools to the crisis action

planning domain for the Third Integrated Feasibility Demonstration (IFD-3). Rockwell,
along with ISX, developed the Course Of Action Trade-o� Analyzer (COATA) for Non-

combatant Evacuation Operations. The functionality provided by COATA was well

received by the Operational Planning Team at the U.S. Paci�c Command, and COATA
was showcased in the original version of TARGET developed for IFD-3 as one of only

a handful of Planning Initiative technologies then present in TARGET. On the basis of
the work on COATA, Rockwell was invited to be a member of BBN's successful bid for

the Deployable Joint Task Force Advanced Technology Program. COATA is described
in Section 4.3.

Rockwell made available two decision-theoretic tools to the Planning Initiative com-

18

Figure 9: Model structure used in the Transportation Trade-O� Analyzer.

munity through the CPE.1 These tools, IDEAL and IDEAL-DEMOS, are general decision-

theoretic modeling tools that can be applied to a wide range of tasks. IDEAL is currently

in use by hundreds of researchers within the decision theory and probabilistic reasoning
community. Section 4.2 briey describes the capabilities of IDEAL and IDEAL-DEMOS;
further information can be found in [47, 46].

Finally, the development of utility models for crisis management pointed to the need

for new techniques on sensitivity analysis, speci�cally on the computation of expected
value of information. The new techniques and algorithms developed by Rockwell for this

program are described in Section 4.4.

1Rockwell was in fact one of the �rst PI members to provide tools for other members.

19

4.1 Transportation Trade-o� Analyzer

As the ARPI began in 1991, the focus was on increasing the capabilities of DOD tools

for military transportation planning and scheduling. Our �rst goal was to explore the

domain of military transportation planning and to capture the essential uncertainties and

trade-o�s inherent in this domain. The strategy was to develop utility and value models

that express trade-o�s between consumption of resources and achievement of goals under

uncertainty, in order to express the preferences, objectives, and knowledge of DOD

planning commands. Once this was done, we encoded this information in a decision-

theoretic model which provided help with such capabilities as generating alternative

plans, guiding search, and controlling computational resource allocation.

The domain study included training at the Armed Forces Sta� College. The resulting

tool was named \Transportation Trade-o� Analyzer (TTA)". Uncertainty was modeled

explicitly using belief networks and inuence diagrams [32], and e�cient mechanisms
for reasoning with probabilistic information were employed. By explicitly modeling
costs, the e�ects of delay, and uncertainties in the transportation process, TTA is able
to optimize the transportation plan for changing requirements and under the changing

conditions of the real world. In its most basic con�guration, holding costs and resources
�xed, the TTA model performs the same functionality as RAPIDSIM or DART in mea-
suring plan feasibility. By relaxing these arti�cial constraints, TTA is able to provide
signi�cantly enhanced information. The characteristics of the TTA model are described
in depth in Rockwell's �rst annual report [4]. A picture of the top level TTA screen is

shown in Figure 9.

4.2 Decision-Theoretic Modeling Tools in the CPE

After the �rst year of the PI program, Rockwell made two general decision-theoretic
modeling tools available to the other members of the PI community. These tools, IDEAL

and IDEAL-DEMOS [48, 47, 46], were placed in the Common Prototyping Environment
(CPE), and were some of the �rst researcher-based tools to be made available there.

IDEAL is a LISP-based test bed for work in inuence diagrams and Bayesian net-

works. It contains various inference algorithms for belief networks and evaluation al-
gorithms for inuence diagrams. It contains facilities for creating and editing inuence
diagrams and belief networks both programmatically and via a CLIM-based graphical

editor called IDEAL-EDIT [17]. An IDEAL-EDIT window displaying a basic IDEAL

inuence diagram is shown below in Figure 10.

IDEAL-DEMOS is a LISP reimplementation of the core of the DEMOS [51] modeling

language. The objective was to complement the IDEAL inference system with some of
the inference capabilities present in DEMOS.2

2DEMOS is a commercially available system for decision modeling.

20

Figure 10: An example of an inuence diagram in IDEAL-EDIT.

21

U
S

C
IT

S
 a

t
A

ss
em

b
ly

Day
0 2 4 6 8 1 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Key Transport Force Choice
C - 1 3 0 s
C-141s and Chartered

Figure 11: The graph describes the buildup of U.S. citizens at an assembly area.

4.3 Course Of Action Trade-o� Analyzer

The success of the TTA model and the knowledge learned from its construction was
bene�cial in several ways. As well as providing feedback that was useful in other research

e�orts, Rockwell was invited to apply the same techniques used in the TTA model to
the domain of crisis action planning for the Third Integrated Feasibility Demonstration
(IFD-3) of the ARPA/Rome Labs Planning Initiative. Rockwell provided the decision-
theoretic plan evaluation capabilities for the Theater-level Analysis, Replanning and

Graphical Execution Toolbox (TARGET) during IFD-3. These capabilities included the

means of estimating the feasibility, costs, casualties, and times associated with various
courses of actions (COA). The targeted user was the executive o�cer of the Opera-

tional Planning Team (OPT). The objective was to provide a computational tool, called
\Course of Action Trade-o� Analyzer" (COATA), for capturing the assumptions and the

rationale behind the planning process. The output of COATA is a set of estimates and
entries that can support the development of a COA selection matrix. Figure 11 shows

an example of these outputs.

COATA consists of three components: a decision model, an inference engine, and a

graphical interface. The decision model was developed by Rockwell personnel in con-

junction with U.S. Paci�c Command to support COA analysis for Non-combatant Evac-

22

Aircraft
Performance

In Country to
Assembly Area

Transfer

NEO
Course

of Action
Alternatives

Assembly Area
to Safe Haven

Transfer

Total
Estimated
AMCITS
Attrition

NEO Transfer
to Safe Haven

Profile

Uncertainty
Analysis

Inputs and
Assumptions

In Country
Estimated

Attrition

Assembly
 Area Estimated

Attrition

Database
Information

COA
Selection

Matrix

Security Force
Transfer to
Assembly

Figure 12: Top level model for the NEO course of action analysis tool. The tool generates

graphs describing risks for U.S. citizens and estimates of transportation times.

23

uation Operations (NEO). The inference engine is part of a Rockwell in-house tool for

decision making under uncertainty, and the run-time graphical interface was developed

primarily by ISX.

The model assumes the following scenario: A situation arises which requires the

evacuation of U.S. civilians from a foreign country. These U.S. citizens, located in one

or more regions in the host country, are told to move from their current locations to

one or more assembly areas in the country. Simultaneously, U.S. military forces are

deployed from their current locations in the world to the assembly areas. Upon arrival,

the military forces secure the assembly areas for civilian transit. Transportation assets

are utilized to move the U.S. citizens from the assembly areas to safe haven(s), which

are generally located outside of the country. The top level model (in the form of an

inuence diagram) is shown in Figure 12.

The COATA model allows the user to instantiate a generic NEO plan with speci�c

locations, forces, and destinations, along with the (possible) uncertainties associated
with this information (represented by probability distributions), and then to perform
trade-o� analyses for di�erent courses of action. The user or some other automated
planner must specify the speci�c data regarding country locations and number of citizens,

the assembly areas, safe havens, security forces, and transportation assets. In addition,
estimates on the risk to the U.S. citizens and the military of attrition (death) at various
stages of the operation are also needed. The di�erent COAs are de�ned by the choice
of security forces (including their original location, date of availability and capabilities),
safe havens, and transportation assets. Note that the use of probability distributions

allows the speci�cation of uncertain and incomplete data that can be re�ned during the
various stages of the planning process.

Once the necessary information is speci�ed, the model performs a dynamic simulation

of the ow of U.S. citizens from their initial locations to assembly areas and then to
the safe havens. Some of the more important outputs of the model include: time to
completion, total of U.S. civilian and military casualties, speed of �rst response, and
maximum build-up of U.S. citizens at assembly areas. The model also includes risk
factors associated with both U.S. citizens and U.S. military personnel as a function of

time. These risk factors are used to calculate expected casualties for various options.
Additionally, since the uncertainty of any input is represented in the model, the tool is

capable of generating an expected value for the parameter as well as a full uncertainty

distribution for any of the output parameters.

The COATA tool provided a successful demonstration of technology transfer for

IFD-3 at PACOM in May and September of 1993. The senior o�cer for the OPT at
PACOM, who helped to develop the model, gave high marks to the capabilities of the

tool. Currently, the Rockwell Palo Alto Laboratory is a member of an on-going project

to extend the TARGET capabilities to the deployable Joint Task Force. The second
annual report contains more speci�c information about COATA [3].

24

4.4 Sensitivity Analysis in Planning

The experience in building computer-based utility models for evaluating and simulating

crisis scenarios pointed towards the need for more sophisticated techniques and methods

for sensitivity analysis. It is necessary to decide which aspects of a scenario are essential

for planning and need to be represented in the model, and which aspects can be ignored.

The reason is simple: given that information is an expensive commodity, every model

must balance the desire for maximumprecision and detail against the need to get the job

done with limited time, data, and computational resources. This tension is particularly

acute in military crisis planning, where the stakes, risks and complexities are typically

high, and where the deadlines are always tight.

Decision theory, and the techniques of decision analysis that are based on it, provide

a number of powerful methods for analyzing these trade-o�s between the precision of a

model and the resources required to analyze it. The explicit representation of uncertainty
in the form of probability distributions allows comparison of the e�ects of the di�erent
sources of uncertainty, and analysis of the costs and bene�ts of obtaining more detailed
information to reduce the uncertainty. A planner needs to know which uncertainties

matter, but he or she also needs to know how to allocate economic resources to resolve
or reduce those uncertainties.

We have therefore focused on giving planners tools for sensitivity analysis and

scenario management. Faced with dozens, possibly hundreds, of variables, with com-
plex interdependencies and interactions among them, planners need principled, e�cient
techniques for identifying the most relevant or essential factors. They need to know
where their strategies are most likely to "break," and, in particular, what uncertainties
contribute most to the fragility of their plans. Such knowledge, in turn, helps them allo-

cate resources (e.g., deployment of intelligence assets, consultation with other experts)
for information-gathering and uncertainty/risk reduction.

For example, consider the NEO-COA model, developed by the Rockwell Palo Alto

Laboratory, in collaboration with planners from PACOM, the Paci�c Crisis Planning
team introduced in Section 4.3, and described in [3]. NEO-COA was designed to help
military planners analyze alternate courses of action for the evacuation of U.S. citizens
from crisis areas. Examples of uncertainties explicitly represented in NEO-COA are the

numbers of U.S. citizens, their locations in particular crisis regions, the accumulated

risks they face over time, and the rates at which they move to assembly areas and
points of embarcation. The number of citizens in the capital might be a probability

distribution with median 500, and a 90% probability that the total is between 300 and
1000. Should planners go ahead now and schedule air transports with capacity for, say,

1000 evacuees? Should they wait until intelligence provides a more precise estimate? Or

should they schedule air transports to carry 500 evacuees, with further capacity 500 to
be held in reserve? NEO-COA can help planners compare these alternatives, and assess

the expected value of better information relative to the costs of waiting for it.

25

4.4.1 The Expected Value of Information

The Expected Value of Information (EVI) is the best sensitivity measure because it

analyzes a variable's importance in terms of the recommended action, and it expresses

that importance in the value units of the problem. Other methods, such as rank-order

correlation, measure a variable's contribution to the overall uncertainty in the model's

outputs, expressed as a probability correlation. EVI, in contrast, measures a variable's

importance in terms of what matters | in the case of NEO-COA, for example, civilian

lives.

Certain methods, such as deterministic perturbation, measure a variable's impor-

tance in terms of what matters; yet they can still mislead. For example, suppose the

only available evacuation transport is a ship that can hold 1500 passengers, and the key

plan option is the choice of safe haven. The number of U.S. citizens at risk in the crisis

region may a�ect the overall outcome of the operation, but will probably not a�ect the
plan choice. EVI would reveal uncertainty about the number of evacuees to be irrelevant
to the plan choice, while deterministic perturbation might show high sensitivity to this
variable.

The use of less powerful sensitivity measures can mislead planners into thinking that
it is worthwhile to wait for information about variables which are, in fact, irrelevant.
Such sensitivities reect the potential of new information to change beliefs or values

on outcomes. EVI, in contrast, measures the potential of new information to change
decisions.

4.4.2 Computing the Value of Information in Large Decision Models

To date, calculation of EVI has remained largely intractable for models of any reasonable
size. In models with discrete variables (i.e., models that admit solutions using decision
trees), EVI has computational complexity that is exponential in the number of state

variables. For models with continuous variables such as NEO-COA, there were, to our
knowledge, no algorithms | exponential or otherwise | for calculating EVI. Thus, an
important part of our work has been to develop e�cient methods for calculating EVI in
probabilistic models for planning.

The innovative approach we developed is based on three features: The synthesis of

an initial high dimensional problem into a summarizing function, the introduction of
special information measures, and an e�cient pre-posterior analysis. The algorithmic

techniques are conceptualized in Figure 13, and a precise description of the algorithm

and the results of its application to NEO can be found in [6, 7].

D denotes a set of m mutually exclusive actions; X is a vector of n state variables,

all of which may be de�ned as probability distributions. The set-up alone makes clear

why the calculation of EVI is di�cult: it is a high-dimensional problem; worse, each

dimension is itself a random variable. We assume a value function V (d;X), which
speci�es value to the decision maker when X assumes a particular value and action d

26

Figure 13: Conceptual overview of the algorithm for estimating EVI.

has been taken. Formally, the de�nition of EVI is as follows:

EV I = max
d

E[V (d;X)jX; s] �max
d

E[V (d;X)js] (1)

where E denotes expectation and s stands for the decision maker's prior state of infor-
mation. (We include s simply to emphasize that all the quantities in the model have

been assessed relative to the decision maker's prior state of information.) That is, EVI is
the di�erence in expected value achieved by taking the optimal action with information
on X, and the optimal action without information on X. For simplicity, in what follows

we assume that D consists of just two discrete actions, d1 and d2.

Observing Figure 13, we see that X and D are applied as inputs to a linearizing

method to be described shortly; the output is a variable we call Z. Z is de�ned as the
di�erence in value between d2 and d1, assuming that d2 is the preferred action (i.e., d2
yields higher expected value than d1).

Z = V (X; d2)� V (X; d1): (2)

In Figure 14, we show a graph of the probability distribution for Z.

Z is the pivotal element of our analysis because it essentially collapses the dimen-
sionality of our original problem. We begin with n probability distributions for each

of the variables of X, a separate set of actions D, and a value function V (X; d). The

27

Figure 14: Probability distribution on Z.

probability distribution on Z | a simpler, two-dimensional quantity | encodes all the
information from these elements that is vital for calculating EVI.

For the next portion of the analysis we consider the impact of evidence or information
e on any of the state variables in X. We use two measures, ESS (equivalent sample size)
and RIM (relative information multiple) to describe the magnitude of new information.
ESS is commonly used in statistical decision theory; RIM is a new measure we have

introduced. If X is the variable about which we expect to receive new information,
then ESS is an equivalent number of observations on X's value, while RIM speci�es a
reduction factor in the variance of the probability distribution for X. The advantage of
a RIM is that it is de�ned in terms of a parameter already familiar to the decision maker
| the variance of the probability distribution for X. In essence, these measures allow

the user to calculate the value of gathering more information about a certain variable,

where \more" is formalized as a multiplicative factor of the initial state of uncertainty:
e.g., what would be the value of decreasing by a factor of 2 our uncertainty on the exact
number of citizens in the capital?

The �nal step of the analysis requires preposterior analysis on Z to calculate the
e�ects of e, expressed in RIM's or ESS, on combinations of state variables. We rely

on our linearizing method, probabilistic analysis, and numerical techniques to solve for
EVI.

We have applied the algorithm to a large-scale decision model for planning NEO-COA
introduced in Section 4.3. The results are described in [6, 7], and include:

� an operational framework for calculating EVI based on ideas from statistical deci-

28

sion theory;

� an e�cient approximation algorithm for EVI;

� a formal analysis which guarantees the convergence of the algorithm, using a stop-

ping rule which tests a simple condition involving pre-speci�ed error parameters

and the algorithm's current estimate; in addition, a guarantee that the algorithm's

estimate is "probably approximately correct" | that is, with probability at least

1� �, the algorithm's output is within relative error " of the "true" answer.

� a knowledge representation for evidence or information that accommodates per-

fect/partial EVI;

� an application of the algorithm to the NEO-COA model; and

� implementation of the algorithm in detachable software modules using DEMOS [51],
a commercially available software tool.

In addition, we have recently completed a set of experiments demonstrating that
the algorithm is stable in the sense that, as its running time increases, its estimates
converge at roughly the same rate as answers calculated using exact techniques. We
have veri�ed that, while the linearizing assumption introduces error, its errors are at

least well-behaved compared to the errors introduced by any estimation algorithm. This
is important, because we want to insure that the errors in the algorithm's outputs are
at least systematic, and that they decrease monotonically as we increase the algorithm's
running time.

Our immediate goal is to apply the resulting algorithm to other large probabilistic
models for planning. We are especially interested to see how well it "scales up" in large,
temporal models for planning under uncertainty, though we do not anticipate di�culties
with such an application.

In sum, we have developed, implemented and tested an e�cient algorithm for

anytime approximation of EVI in large probabilistic models, for perfect and/or
partial information on any combination of variables, and with no limiting assumptions

about the distributions of the variables, the nature of the value function, or the number
of possible actions.

5 Plan Simulation

Our work on plan simulation was directed towards creating a tool for supporting the

functionality portrayed in Figure 15. Here, a human planner is confronted with a sit-

uation, an objective and some courses of action (plans) that are believed to achieve
the objective. The human planner, however, is looking for assistance in simulating the

behavior of each of these plans to make a choice on which one to adopt. The purpose of

29

Action Networks
Action Networks

Simulation/
Analysis
Queries

A Suite
of Plans

Domain
Models

Iterative Feedback

Action Networks

Plan Simulator & Analyzer

Figure 15: Schematic view of a plan simulation scenario.

our work under this part of the contract is to develop such a tool, which is comprised of
two major components:

1. A language for modeling the situation at hand.

2. A set of algorithms that operate on the model in order to simulate a plan.

These two components are described in the following two sections (Sections 5.1 and 5.2.

5.1 Action Networks

The �rst step in simulating and analyzing a plan is to describe the domain in which

this plan will be executed. According to the terminology used in SWAT team B report,

this amounts to creating a situation model. In our research program, we proposed the

30

formalism of action networks to construct a situation model and used them to simulate

military plans (see Figure 16). In the remainder of this section, we will focus on the

following:

1. Provide a brief introduction into action networks as a domain modeling language

2. Summarize the current status of action networks based on research conducted

under this contract

5.1.1 Introduction into action networks

An action network is a modeling tool oriented mainly towards dynamic domains that can

be controlled by agents. Action networks are very closely connected to what is known

as causal networks, which are the most sophisticated and e�ective tools for modeling

domains under uncertainty as demonstrated by many real-world applications [5, 32].

The di�erence between (the recently developed) action networks and (the by now

matured) causal networks is that causal networks do not include explicit constructs for
modeling time and action, which are the key primitives for generating plans in dynamic
domains. Our work on action networks was aimed mainly on introducing these two
primitives to causal networks. We emphasize here that each action network is equivalent
to a causal network. Therefore, action networks are supported by all the theoretical
and practical tools that have been developed for causal networks, including the theory

developed in [32] and the various commercial tools available from a number of vendors.

5.1.2 Progress on Action Networks

The �rst publication on action networks appeared in [14], which describes the following
additions that action networks brought to causal networks:

1. Controllable variables (action), which are variables in a causal structure that can
be controlled by agents. With respect to a controllable variable, an action net-

work may designate a number of other variables that determine the conditions of

controllability. These are called precondition variables and are connected to the
controllable variables using a precondition arc.

2. Persistent variables (facts), which are variables in a causal structure the values of

which persists over time unless acted upon by agents.

Variables that are neither actions nor facts are called events. These are variables that
cannot be controlled but at the same time will retain their values over time.

In terms of implementational details, action networks and a number of corresponding

inference algorithms are implemented in C-NETS [11], a common lisp system of which

we are constructing a C version.

31

Rebel Threat
in Abyss

Rebel Threat in
Delta

Troops Location

Civilians at AA

Successful arrival
to Delta

Civilians on their
way to Delta

Planes Availability

Rebel Forest
Access

Figure 16: An example of an action network.

32

In addition to controllable and persistent variables, action networks have brought

to traditional causal networks the ability do symbolic and qualitative reasoning under

uncertainty. Traditionally, causal networks have been probabilistic in the sense that

cause{e�ect interactions are quanti�ed by providing probabilities of e�ects given their

causes. But action networks are not necessarily probabilistic. Instead, a causal network

will consist of two parts: a directed graph � representing a \blueprint" of the causal rela-

tionships in the domain and a quanti�cation Q of these relationships. The quanti�cation

Q introduces a representation of the uncertainty in the domain because it speci�es the

degree to which causes will bring about their e�ects. Action networks allow uncertainty

to be speci�ed at di�erent levels of abstraction:

1. Point probabilities, which is the common practice in causal networks [32].

2. Order{of{magnitude probabilities, also known as epsilon probabilities [23, 24, 15].

One should emphasize here that causal networks are usually associated with proba-
bilistic reasoning and therefore are perceived to inherit the problems associated with this

mode of reasoning, especially the infamous where-do-the-numbers-come-from? problem.
We stress, however, that causal networks upon which action networks are based could
be purely symbolic if the user so desires [16]. The principal investigators in this program
have been leading the e�orts for going beyond point probabilities in quantifying causal
networks; their work on this can be found elsewhere [9, 23].

Although action networks support order-of-magnitude probabilities, they do not sup-
port pure symbolic modeling yet. We plan to address this ability, however, in future
research.

5.2 Algorithms

5.2.1 Introduction

In our approach, plan simulation reduces computationally to reasoning with a belief

network. There is a number of algorithms in the literature for this purpose [32], but they

do perform poorly on networks generated for plan evaluation. The basic problem is the
existence of undirected cycles (loops) in the network, which complicates the computation
process.3 Networks generated for plan evaluation tend to have many loops given their

temporal nature. For example, a network with one loop could have more than twenty

loops when expanded over three time steps.

To deal with networks containing loops, researchers have appealed to two concepts:

clustering and conditioning. In clustering, the network is aggregated to allow the de-
composition of computations into simpler ones. In conditioning, certain variables are

instantiated to allow for conditional independences to hold, thus leading to more e�cient

3If no loops exist, the network is singly{connected and the computational complexity is linear in the
number of nodes and arcs.

33

computations. The method of clustering is due to Lauritzen and Spiegelhalter [30], and

the conditioning algorithm is due to Pearl [32].

As was observed by Pearl [32], the use of conditioning to facilitate the computation

of beliefs is not foreign to human reasoning. When we �nd it hard to assess our belief

in a proposition, we often make hypothetical assumptions that render the assessment

simpler. This correspondence to human reasoning is probably the reason why cutset

conditioning was �rst expected to be more e�cient than other methods for evaluating

belief networks. But as observed later in [33], practice has shown that conditioning

turned out to be computationally less attractive than the Lauritzen and Spiegelhalter

algorithm [30].

Our commitment to conditioning methods stems from two factors: 1) We know that

we can apply these methods to any network independently of its quanti�cation [9],4 and

2) we have identi�ed a number of computational techniques that are best embedded

in the context of a conditioning method. To provide a set-up for implementing these
techniques, we developed the method of dynamic conditioning, which is a re�nement of

cutset conditioning that makes it comparable in computational performance to cluster-
ing methods. Based on dynamic conditioning, we developed the method of �-bounded
conditioning, which is an approximate method that allows one to trade e�ciency for
accuracy of computation. We also investigated two specialized algorithms. The �rst
is a prediction algorithm that applies to action networks only by taking advantage of

the recurrent structure of the temporal expansion of the action network. The second
algorithm is also for prediction and is applied to order-of-magnitude networks only by
taking advantage of approximating probabilistic uncertainty to orders-of-magnitude un-
certainty. We will discuss each of these algorithms in the following sections. But we
�rst summarize the algorithms according to the properties that make them of interest

to plan simulation:

Dynamic Conditioning: A method for the exact simulation of plans and is based

on hypothetical reasoning (reasoning by cases). The signi�cance of the algorithm
stems from: (1) It is the basis for the algorithm of �-bounded conditioning to
be discussed next; and (2) It is an infra-structure for realizing computational

techniques that are based on reasoning by cases.

�-bounded conditioning: A method for the approximate simulation of plans which
allows one to trade the exactness of the simulation with the time it takes to com-

pute the simulation. The signi�cance of this algorithm stems from the following

observation: Although the results of a particular simulation may not be exact,
they may be enough to support a speci�c judgment about some plan.

Action Network Predict: An algorithm for predicting the e�ect of plans with respect

to a subclass of action networks. The algorithm has a polynomial computational
complexity on this subclass.

4To the best of our knowledge, there are no current results (or implementation) that suggests that
clustering methods can work for quanti�cations other than probabilistic.

34

PSA

User selects from a suite of algorithms,
 trading off speed for accuracy

User provides a set of
courses of action to
be simulated

Action Network, provided by the user,
is a static description of the domain. It
is automatically expanded over time in
the PSA

Degree of Belief on:
 Successful arrival?
 Rebel threat?
 Civilians location?
 etc.

Figure 17: Current realization of the Plan Simulator and Analyzer (PSA) tool.

Kappa Predict: An algorithm for predicting the e�ect of plans with respect to order-
of-magnitude action networks. The algorithm has a polynomial computational

complexity but may be unable to provide complete answers in certain cases. The
signi�cance of this algorithm stems from at least two factors: (1) Although the
answers it provides may be incomplete, they may be enough to judge the quality
of given plans; and (2) It is a major building block of �-bounded conditioning that
we discussed earlier.

Figure 17 shows a re�nement of the schematics in Figure 15, with a precise charac-
terization of inputs and outputs including a choice of the algorithms described above for

computation.

5.2.2 Dynamic Conditioning

As a �rst step in our research on algorithms, we have attempted to show that condi-
tioning methods can be as e�cient as clustering methods, thus setting the ground for

our further improvements on this approach. In particular, we re�ned cutset condition-

ing into the method of dynamic conditionining [12], which was shown experimentally to
perform comparably to the Lauritzen and Spiegelhalter clustering method.

The breakthrough that permitted our results is the discovery of two important no-

tions in connection to conditioning methods: local and relevant cutsets, which are subsets
of a loop cutset on which the method of conditioning is based. Relevant cutsets can be

35

identi�ed in linear time and they usually lead to exponential savings when computing

beliefs in the light of assumptions. Local cutsets, on the other hand, eliminate the need

for considering an exponential number of assumptions because they identify assumptions

that lead to the same beliefs. Local cutsets can be computed in polynomial time from

relevant cutsets. The algorithm of dynamic conditioning is a re�nement of cutset con-

ditioning utilizing the notions of relevant and local cutsets. We provided experimental

results in [12] showing that dynamic conditioning performs comparably to the Lauritzen

and Spiegelhalter algorithm as implemented in IDEAL [19, 48]. We also discussed net-

work structures on which dynamic conditioning has a linear computational complexity,

while cutset conditioning leads to an exponential behavior.

Dynamic conditioning has been implemented in C-NETS [11]5 and tested for cor-

rectness against IDEAL [48] over hundreds of randomly generated networks.

5.2.3 Prediction Algorithm: Speci�c to action networks

Temporal causal networks that result from expanding atemporal networks (using the
suppressor model) [14] tend to have a large number of undirected cycles. These cycles

lead to networks that are di�cult to manage computationally; in fact, inference in such
networks is known to be NP-hard.

To deal with such networks, we have been exploring a number of approaches. One of

these approaches tries to prove independence properties about temporal networks that
are then utilized by algorithms in decomposing complex computations into simpler ones
that can be performed in parallel. A second approach explores task-speci�c procedures
with computation of approximate answers sacri�cing accuracy in order to gain speed.

A key result obtained under this investigation is that temporal networks that result
from expanding singly connected atemporal networks (without cycles) have some strong
independences properties. In particular, it can be shown that the parents �(Nt) of any
node Nt at time t become independent given the images of Nt and �(Nt) at time t� 1.

This independence is strong enough to justify the derivation of a sound and complete

algorithm for prediction that is linear in the number of time steps and exponential
only in twice the number of parents per node. The algorithm is valid for inference in
probabilistic, kappa, and symbolic causal networks.

We stress here that although the original atemporal network may be singly connected,

its temporal expansion may have many cycles, which makes it very di�cult for general
purpose inference algorithms. But by virtue of the expansion method (according to the

suppressor model), the resulting multiply connected network is guaranteed to satisfy

some strong independence properties.

5C-NETS is an environment for representing and computing with generalized causal networks [9, 13].
Therefore, dynamic conditioning is not restricted to reasoning with probabilistic causal networks, but
is also applicable to other classes of networks, such as kappa causal networks [21] and symbolic causal
networks [10].

36

5.2.4 Prediction Algorithm: Speci�c to order-of-magnitude networks

The second approach we investigated is an algorithm for prediction that takes as input

a network quanti�ed with kappas (degrees of plausibility based on probabilities) and

returns as output the most plausible state of each variable.

The algorithm has the following properties:

1. The asymptotic complexity is O(max[E;N �LU]) where E is the number of edges

in the network, N is the number of nodes, and LU are table look-up operations.6

2. The algorithm is sound: If the algorithm predicts that x is the most plausible state

of X, then the probability of X = x is arbitrarily high.

3. The algorithm is complete only in any of the following cases:

� The matrices representing plausibility of nodes never leaves that plausibility
undetermined. That is for every state of the parents of the node in the

network there is a unique most plausible state.

� Nodes whose most plausible state remain uncommitted are not involved in

cycles where all other nodes are also uncommitted.

In the context of the algorithm, completeness means that if the probability of
X = x is high, then the algorithm should return x as the most plausible state of X.
The lack of completeness simply means that some times the algorithm will remain

uncommitted regarding to the most plausible state of a variable X, even though
this state could be determined by exact (but time consuming) computations. We
point out that checking whether the result of a run of the algorithm for a speci�c
query is complete, is O(E) where E is the number of edges in the network.

This algorithm can be used to perform prediction, given a course of action, in a domain
represented using default rules, or as an approximate prediction algorithm in proba-
bilistic representation. The approximation is done as proposed in [15], by transforming
exact probabilistic statements into order-of-magnitude probabilistic statements. Details

about the algorithm can be found in [22].

This algorithm is implemented on top of C-NETS [11].

5.2.5 Bounded Conditioning

�-bounded conditioning is a method for the approximate updating of causal networks.

It is a special case of bounded conditioning [26], which ranks the conditioning cases in
cutset conditioning according to their probabilities and then considers the more likely

cases �rst. The contribution of �-bounded conditioning is in:

6The uncertainty in the domain is stored in matrices associated with the nodes in a network. A
table look-up operation implies, in the worst case, examining all the entries of a particular matrix. The
size of these matrices is nevertheless, bounded.

37

1. proposing a particular method for ranking the conditioning cases and

2. providing some guarantees about the approximate degrees of belief it computes.

To simplify the discussion, we will ignore the existence of evidence, therefore focusing

only on the computation of Pr(x) where X is a variable in the causal network.

Cutset conditioning computes the following sum [35],

Pr(x) =
X

s

Pr(x ^ s);

where s ranges over all possible states of a loop cutset. The problem with cutset con-

ditioning, however, is that the number of cutset states is exponential in the size of the

cutset. To deal with this di�culty, bounded conditioning [26] orders the elements of the

above sum according to their values so that elements of a bigger value are considered
�rst.

�-bounded conditioning splits members of the above sum into two classes, those
exceeding a particular value � and those having a lesser or equal value to �. It then
ignores the latter elements of the sum.

�-bounded conditioning applies to both probabilistic and kappa causal networks, but
we restrict the discussion here to probabilistic networks.

The Probabilistic Case

For some �, �-bounded conditioning splits the conditioning sum as follows:

Pr(x) =
X

s;Pr(s)>�

Pr(x ^ s) +
X

s;Pr(s)��

Pr(x ^ s):

The algorithm then ignores
P

s;Pr(s)�� Pr(x ^ s), thus computing:

Pr 0(x) =
X

s;Pr(s)>�

Pr(x ^ s):

An important property of �-bounded conditioning is that we can judge the quality of

its approximations without knowing what the chosen value of � because it provides an

upper and a lower bound on the exact probability.

To completely specify �-bounded conditioning, we need to show how to identify cutset

states that have probability no more than �, which is discussed next.

Suppose that we have an algorithm such that for each variable X and value x it

will tell us whether Pr(x) � �. Using such an algorithm, call it �-algorithm, we can

identify all cutset states that have probabilities no more than an �. One such an �-

algorithm for prediction is the one we discussed earlier for order-of-magnitude networks.

This algorithm, which is linear in the number of arcs, is sound but incomplete, where
incompleteness means that the algorithm may return \unknown" for whether Pr(x) � �.

38

This incompleteness, however, does not matter for �-bounded conditioning: it only means

that some cutset states which have probability greater than � are being considered by �-

bounded conditioning although they should be ignored. Of course, however, the closer to

being complete the �-algorithm is, the better the performance of �-bounded conditioning

will be.

6 Concluding Remarks

Military planning activities, like most complex problems, must respond to multiple com-

peting objectives with uncertainty about actual outcomes. The approach pursued at the

Rockwell Science Center is centered on well founded normative notions of rational deci-

sion making and probability theory, and is based on the expertise of the researchers of

the laboratory in this area.

The results of this program, as summarized in Tables 1 and 2, have produced im-

portant advances in the state of the art in the generation, evaluation, and simulation of
plans, with recognized impact in both the scienti�c and application oriented community
as well as in ARPA. Moreover, we are currently investigating the application (and transi-
tion) of the methods and technology developed under this program to Rockwell business
divisions in the areas of automatic diagnosis, optimal repair, and resource allocation.

References

[1] A. Balke and J. Pearl. Probabilistic evaluation of counterfactual queries. In Pro-

ceedings of the 10th Conference on Uncertainty in Arti�cial, Intelligence, 1994. In

press.

[2] Anthony Barrett and Daniel S. Weld. Partial-order planning: evaluating possible

e�ciency gains. Arti�cial Intelligence, 67(1):71{112, 1994.

[3] John Breese, Michael Buckley, Tom Ch�avez, Max Henrion, Eric Horvitz, David

Smith, Mark Peot, and James White. Decision-theory for crisis management {

annual report II. Period of performance: February 1992 { January 1993, Contract

F30602-91-C-0031, 1993.

[4] John Breese, Max Henrion, David Smith, and Mark Peot. Decision-theory for crisis
management { annual report I. Period of performance: February 1991 { January

1992, Contract F30602-91-C-0031, 1992.

[5] Eugene Charniak. Bayesian networks without tears. The AI Magazine, 12(4):50{63,

1991.

39

[6] Tom Ch�avez and Max Henrion. E�cient estimation of value of information in Monte

Carlo models. In Proceedings of the 10th Conference on Uncertainty in Arti�cial,

Intelligence, pages 119{127, 1994.

[7] Tom Ch�avez and Max Henrion. Focusing on what matters in plan evaluation:

E�ciently estimating the value of information. In Proceedings of the Workshop

of Knowledge Base Planning and Scheduling Initiative (ARPA{Rome Labs.), pages

387{400, 1994.

[8] Greg Collins and Louise Pryor. Achieving the functionality of �lter conditions in a

partial order planner. In Proceedings of the Tenth National Conference on Arti�cial

Intelligence, pages 375{380, 1992.

[9] Adnan Darwiche. A symbolic generalization of probability theory. PhD thesis, Com-

puter Science Dept., Stanford University, 1992.

[10] Adnan Darwiche. Argument calculus and networks. In Proceedings of the Ninth

Conference on Uncertainty in Arti�cial Intelligence, pages 420{421, Washington
DC, 1993.

[11] Adnan Darwiche. CNETS: A computational environment for causal networks. Tech-
nical memorandum, Rockwell International, Palo Alto Labs., 1994.

[12] Adnan Darwiche. Dynamic conditioning: An e�cient re�nement of cutset condi-
tioning using local and relevant cutsets. Technical memorandum, Rockwell Science
Center, Palo Alto Labs., 1994.

[13] Adnan Darwiche and Matthew Ginsberg. A symbolic generalization of probabil-
ity theory. In Proceedings of the American Association for Arti�cial Intelligence

Conference, pages 622{627, San Jose, CA, 1992.

[14] Adnan Darwiche and Mois�es Goldszmidt. Action networks: A framework for rea-
soning about actions and change under uncertainty. In Proceedings of the 10th

Conference on Uncertainty in Arti�cial, Intelligence, pages 136{144, 1994.

[15] Adnan Darwiche and Mois�es Goldszmidt. On the relation between kappa calculus

and probabilistic reasoning. In Proceedings of the 10th Conference on Uncertainty

in Arti�cial, Intelligence, pages 145{153, 1994.

[16] Adnan Darwiche and Judea Pearl. Symbolic causal networks. In Proceedings of the

Twelfth National Conference on Arti�cial Intelligence, pages 238{244, 1994.

[17] Denise Draper and John Breese. IDEAL-EDIT: Documentation and user's guide.

Rockwell Science Center, Palo Alto Laboratory, 1992. Technical Memorandum #

77.

40

[18] Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with informa-

tion gathering and contingent execution. In Proceedings of the Second International

Conference on AI Planning Systems, pages 31{36, 1994.

[19] F.Jensen, S. Lauritzen, and K. Olesen. Bayesian updating in recursive graphical

models by local computations. Technical Report R 89-15, Institute for Electronic

Systems, Department of Mathematics and Computer Science, University of Aalborg,

Denmark, 1989.

[20] Robert P Goldman and Mark S. Boddy. Conditional linear planning. In Proceedings

of the Second International Conference on AI Planning Systems, pages 80{85, 1994.

[21] Mois�es Goldszmidt. Qualitative Probabilities: A Normative Framework for Com-

monsense Reasoning. PhD thesis, Computer Science Dept., University of California

Los Angeles, 1992. Technical Report TR-190, Cognitive Systems Laboratory.

[22] Mois�es Goldszmidt. Belief-based irrelevance and networks: Toward faster algo-
rithms for prediction. Working notes: AAAI Fall Symposium on Relevance, 1994.

[23] Mois�es Goldszmidt and Judea Pearl. Rank-based systems: A simple approach
to belief revision, belief update, and reasoning about evidence and actions. In
Principles of Knowledge Representation and Reasoning: Proceedings of the Third

International Conference, pages 661{672, Boston, 1992.

[24] Mois�es Goldszmidt and Judea Pearl. Reasoning with qualitative probabilities can
be tractable. In Proceedings of the 8th Conference on Uncertainty in AI, pages
112{120, Stanford, 1992.

[25] D. Heckerman, J. Breese, and K. Rommelse. Sequential troubleshooting under

uncertainty. Submitted to CACM, 1994.

[26] Eric Horvitz, Gregory Cooper, and H. Jacques Suerdmont. Bounded conditioning:
Flexible inference for decisions under scarce resources. Technical Report KSL-89-42,
Knowledge Systems Laboratory, Stanford University, 1989.

[27] David Joslin and Martha E. Pollack. Least-cost aw repair: a plan re�nement strat-

egy for partial-order planning. In Proceedings of the Twelfth National Conference

on Arti�cial Intelligence, pages 1004{1009, 1994.

[28] Subbarao Kamhampati, 1993. Personal communication.

[29] Subbarao Kamhampati, Craig Knoblock, and Qiang Yang. Planning as re�nement
search: a uni�ed framework for evaluating design tradeo�s in partial order planning.

Arti�cial Intelligence, 1994. To appear.

[30] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graph-

ical structures and their applications to expert systems. Royal Statistical Society,

50:154{227, 1988.

41

[31] David McAllester and David Rosenblitt. Systematic nonlinear planning. In Pro-

ceedings of the Ninth National Conference on Arti�cial Intelligence, pages 634{639,

1991.

[32] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[33] Judea Pearl. Belief networks revisited. Arti�cial Intelligence, Special Issue, \AI in

Perspective,"(59):49{56, 1993.

[34] J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order

planner for adl. In Proceedings of the Third International Conference on Knowledge

Representation and Reasoning, 1992.

[35] Mark Peot and Ross Shachter. Fusion and propagation with multiple observations

in belief networks. Journal of Arti�cial Intelligence, 48(3):299{318, 1991.

[36] Mark A. Peot. Decision-Theoretic Planning. PhD thesis, Stanford University, 1995.

In preparation.

[37] Mark A. Peot and David E. Smith. Conditional nonlinear planning. In Proceedings

of the First International Conference on AI Planning Systems, pages 189{197, 1992.

[38] Mark A. Peot and David E. Smith. Threat-removal strategies for partial-order plan-
ning. In Proceedings of the Eleventh National Conference on Arti�cial Intelligence,

pages 492{499, 1993.

[39] Earl Sacerdoti. A structure for plans and behavior. North Holland, 1977.

[40] David E. Smith. Controlling recursion in planning. In preparation, 1994.

[41] David E. Smith. Evaluating partial plans. In preparation, 1994.

[42] David E. Smith and Mark A. Peot. A critical look at knoblock's hierachy mecha-

nism. In Proceedings of the First International Conference on AI Planning Systems,

pages 307{308, 1992.

[43] David E. Smith and Mark A. Peot. Postponing simple conicts in nonlinear plan-

ning. In Working Notes of the AAAI Spring Symposium on Foundations of Auto-

matic Planning: The Classical Approach and Beyond, pages 132{136, 1993.

[44] David E. Smith and Mark A. Peot. Postponing threats in partial-order planning.

In Proceedings of the Eleventh National Conference on Arti�cial Intelligence, pages
500{506, 1993.

[45] David E. Smith and Mark A. Peot. A note on the dmin strategy. Available by

request, 1994.

42

[46] Sampath Srinivas. IDEAL-DEMOS: Documentation and user's guide. Rockwell

Science Center, Palo Alto Laboratory, 1992. Technical Memorandum # 76.

[47] Sampath Srinivas and John Breese. IDEAL: Inuence diagram evaluation and

analysis in Lisp. Documentation and user's guide. Rockwell Science Center, Palo

Alto Laboratory, 1989. Technical Memorandum # 23.

[48] Sampath Srinivas and John Breese. IDEAL: a software package for analysis of

inuence diagrams. In Proceedings of the 6th Conference on Uncertainty in Arti�cial

Intelligence, Cambridge, MA, 1990.

[49] Gerald Sussman. A computational model of skill acquisition. Technical report, MIT

AI Laboratory, 1973.

[50] David E. Wilkins. Practical Pplanning: Extending the Classical AI Planning

Paradigm. Morgan Kau�man, 1988.

[51] NeilWishbow and Max Henrion. Demos User's Manual. Department of Engineering

and Public Policy, Carnegie-Mellon University, 1987.

[52] Quang Yang. A theory of conict resolution in planning. Arti�cial Intelligence,
58:361{392, 1992.

43

A Appendix: Relevant Papers

In the appendix we include �ve papers by project team members:

� TomCh�avez and Max Henrion. \Focusing on what matters in plan evaluation:

E�ciently estimating the value of information." In Proceedings of the Workshop of

Knowledge Base Planning and Scheduling Initiative (ARPA{Rome Labs.), pages

387{400, 1994.

� Adnan Darwiche and Mois�es Goldszmidt. \Action networks: A framework

for reasoning about actions and change under uncertainty." In Proceedings of the

10th Conference on Uncertainty in Arti�cial, Intelligence, pages 136{144, 1994.

� Mark A. Peot and David E. Smith. \Conditional nonlinear planning." In

Proceedings of the First International Conference on AI Planning Systems, pages

189{197, 1992.

� Mark A. Peot and David E. Smith. \Threat-removal strategies for partial-

order planning." In Proceedings of the Eleventh National Conference on Arti�cial

Intelligence, pages 492{499, 1993.

� David E. Smith and Mark A. Peot. \Postponing simple conicts in nonlinear

planning." In Working Notes of the AAAI Spring Symposium on Foundations of

Automatic Planning: The Classical Approach and Beyond, pages 132{136, 1993.

44

